

**STROKE BUSH** 



The NB ball spline is a linear motion mechanism utilizing the rotational motion of ball elements. It can be used in a wide variety of applications including robotics and transport type equipment.

#### STRUCTURE AND ADVANTAGES

The NB ball spline consists of a spline shaft with raceway grooves and a spline nut. The spline nut consists of an outer cylinder (main body), retainer, side rings, and ball elements. Designed and manufactured to achieve a reliably smooth motion. **High Load Capacity and Long Travel Life:** 

The raceway grooves are machined to a radius close to that of the ball elements. The large ball contact area results in high load capacity and long travel life. Wide Variety of Configurations:

# 16 shaft sizes with diameters from 4mm to 100mm are available. Seven different types of nuts are available: cylindrical types (SSP/SSPM), flange types (SSPF/SSPT), and block types (SPA/SPA-W/SSPB). Material option of Stainless steel(440C or equivalent) is also available. They can be specified to suit various applications.

#### **Transmission of Torque:**

NB ball splines can sustain loads in several directions simultaneously . They can be used as a single shaft system and can transmit (or resist) torque.

#### **Ease of Additional Custom Machining:**

Since a round shaft with raceway grooves is used, NB ball spline shafts can be machined easily to customized specifications.

## High-Speed Motion and High-Speed Rotation:

The outer cylinder is compact and well balanced, resulting in good performance at high speed.





## **TOPBALL® PRODUCTS**

SLIDE BUSH

SLIDE SHAFT

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

ACTUATOR



**TYPE** 

#### **TYPES OF SPLINE NUT:**

A wide variety of spline nut designs are available and all spline nuts come with a side-seal as a standard feature.

#### Table B-1 Types of Spline Nut



## NB

#### Table B-2 Types of Spline Nut



|  |          | INVA OIN |
|--|----------|----------|
|  | ACTUATOR |          |

| Table B-3 Types of Spline        | Shaft                                                                                                                                                                                                                                                                                  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type of spline shaft             | shape and advantage                                                                                                                                                                                                                                                                    |
| ground spline shaft              | <ul> <li>precision-ground and precision<br/>machined surface finish</li> <li>high precision</li> <li>possible to machine ends of spline<br/>shaft and surface finish</li> <li>nominal diameter: 4mm-100mm</li> </ul>                                                                   |
| standard spline shaft            | <ul> <li>standard dimension and shape</li> <li>accuracy grade: high grade</li> <li>short lead time</li> <li>nominal diameter: 4mm-60mm<br/>(Refer to page B-30)</li> </ul>                                                                                                             |
| commercial shaft<br>(non-ground) | <ul> <li>for general industrial use</li> <li>with special finished raceway surface</li> <li>low cost</li> <li>possible to machine ends of spline<br/>shaft and surface finish</li> <li>nominal diameter: 20mm-50mm</li> <li>maximum length: 5000mm<br/>(Refer to page B-31)</li> </ul> |

Depending on the application requirements, either a fully machine ground spline shaft or a commercial grade

spline shaft can be specified.

**TYPES OF SPLINE SHAFT:** 



## ACCURACY

The NB ball spline is measured for accuracy at points shown in Figure B-2 and categorized as either highgrade or precision-grade (P). Contact NB for accuracy information on the commercial type ball spline.

Table B-4 Tolerance of Spline Shaft and groove torsion

| type of shaft  | ground shaft |               |  |  |  |
|----------------|--------------|---------------|--|--|--|
| accuracy grade | high         | precision (P) |  |  |  |
| tolerance      | 13µm/100mm   | 6µm/100mm     |  |  |  |

unit/ $\mu$ m

#### Figure B-2 Accuracy Measurement Points



The part attachment area is the portion to which other parts, such as gears are attached.

| part number   | radial run-out of part attachment<br>area ① |                 | perpendicularity<br>spline shaf | of the end of the tsection ② | perpendicularity of the flange ③ |                 |  |
|---------------|---------------------------------------------|-----------------|---------------------------------|------------------------------|----------------------------------|-----------------|--|
|               | high-grade                                  | precision-grade | high-grade                      | precision-grade              | high-grade                       | precision-grade |  |
| SSP 4         |                                             |                 |                                 |                              | -                                | _               |  |
| SSP 6         | 14                                          | 8               | 0                               | 6                            |                                  | 0               |  |
| SSP 8         |                                             |                 | 9                               | б                            |                                  | 0               |  |
| SSP 10        | 17                                          | 10              |                                 |                              |                                  |                 |  |
| SSP 13A       |                                             |                 |                                 | 8                            | 13                               | 9               |  |
| SSP 16A       | 19                                          | 19 12           | 11                              |                              |                                  |                 |  |
| SSP 20A       |                                             |                 |                                 |                              |                                  |                 |  |
| SSP 20        |                                             |                 |                                 |                              |                                  |                 |  |
| SSP 25A       |                                             |                 |                                 |                              |                                  |                 |  |
| SSP 25        | 22                                          | 22 13           | 13                              | 9                            | 16                               | 11              |  |
| SSP 30        |                                             |                 |                                 |                              |                                  |                 |  |
| SSP 40        | 25                                          | 45              | 40                              | 4.4                          | 10                               | 40              |  |
| SSP 50        | 25                                          | 15              | 10                              |                              | 19                               | 13              |  |
| SSP 60        | 20                                          | 17              | 10                              | 10                           | 22                               | 15              |  |
| SSP 80 • 80L  | 29                                          | 17              | 19                              | 13                           | _                                | _               |  |
| SSP100 · 100L | 34                                          | 20              | 22                              | 15                           | _                                | _               |  |

Table B-5 Tolerance of Parts Relative to Spline Support Area (Max.)

| _         |
|-----------|
| _         |
| _         |
| _         |
|           |
| <u> </u>  |
|           |
| _         |
| •••       |
|           |
|           |
|           |
|           |
| -         |
|           |
| _         |
| -         |
|           |
|           |
| _         |
|           |
|           |
| - C- T- C |
| _         |
|           |
|           |
|           |
| -         |
| -         |
| D         |
| 및         |
| 몼         |
| R         |
| R         |
| R         |
| PRO       |
| PRO       |
| PROE      |
| PROD      |
| PROD      |
| PRODU     |
| PRODU     |
| PRODU     |
| PRODUC    |
| PRODUC    |
| PRODUC    |
| PRODUC'   |
| PRODUCT   |
| PRODUCT   |
| PRODUCTS  |
| PRODUCTS  |

unit/ $\mu$ m

| ျ    |  |
|------|--|
| Ð    |  |
| E CO |  |
| ğ    |  |
| ñ    |  |

|                 |             |                |                    |                |                    |                |                    |                | part n             | umber          |                    |                |                    |                |                    |                |                    |
|-----------------|-------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|
| total length    | n of spline | SS             | SP4                | SS             | P10                | SSF            | P13A               | SSF            | 20A                | SS             | P20                | SS             | P40                | SS             | SP60               | SS             | P100               |
| shaft           | (mm)        | SS             | SP6                |                |                    | SSF            | P16A               | SSF            | 25A                | SS             | P25                | SS             | P50                | SS             | SP80               | SS             | P100L              |
|                 |             | SS             | SP8                |                |                    |                |                    |                |                    | SS             | P30                |                |                    | SS             | SP80L              |                |                    |
| greater<br>than | or less     | high-<br>grade | precision<br>grade |
| —               | 200         | 46             | 26                 | 36             | 20                 | 34             | 18                 | 32             | 18                 | 32             | 18                 | 32             | 16                 | 30             | 16                 | 30             | 16                 |
| 200             | 315         | 89             | 57                 | 54             | 32                 | 45             | 25                 | 39             | 21                 | 39             | 21                 | 36             | 19                 | 34             | 17                 | 32             | 17                 |
| 315             | 400         | 126*           | 82*                | 68             | 41                 | 53             | 31                 | 44             | 25                 | 44             | 25                 | 39             | 21                 | 36             | 19                 | 34             | 17                 |
| 400             | 500         | 163*           | 108*               | 82             | 51                 | 62             | 38                 | 50             | 29                 | 50             | 29                 | 43             | 24                 | 38             | 21                 | 35             | 19                 |
| 500             | 630         | —              | -                  | 102            | 65                 | 75             | 46                 | 57             | 34                 | 57             | 34                 | 47             | 27                 | 41             | 23                 | 37             | 20                 |
| 630             | 800         | _              | -                  | -              | -                  | 92             | 58                 | 68             | 42                 | 68             | 42                 | 54             | 32                 | 45             | 26                 | 40             | 22                 |
| 800             | 1,000       | —              | -                  | -              | -                  | 115            | 75                 | 83             | 52                 | 83             | 52                 | 63             | 38                 | 51             | 30                 | 43             | 24                 |
| 1,000           | 1,250       | —              | -                  | -              | -                  | 153            | 97                 | 102            | 65                 | 102            | 65                 | 76             | 47                 | 59             | 35                 | 48             | 28                 |
| 1,250           | 1,600       | —              | -                  | -              | -                  | 195*           | 127*               | 130            | 85                 | 130            | 85                 | 93             | 59                 | 70             | 43                 | 55             | 33                 |
| 1.600           | 2.000       | _              | _                  | _              | _                  | -              | _                  | 171            | 116                | 171            | 116                | 118            | 77                 | 86             | 54                 | 65             | 40                 |

Table B-6 ④Radial Run-Out of Outer Surface of Spline Nut Relative to Spline Shaft Support Area (Max.)

\*SSP4 maximum fabrication length: 300mm; SSP6 maximum fabrication length: 400mm; SSP13A, 16A maximum fabrication length: 1500mm \*\*For lengths exceeding 2000mm, contact NB.

## **PRE-LOAD AND CLEARANCE IN ROTATIONAL DIRECTION**

Both the clearance and pre-load are expressed in terms of clearance in the rotational direction. The pre-load is categorized into three different levels : standard, light (T1), and medium (T2). A pre-load cannot be specified when using the commercial grade spline shaft.

| Table B-7 Pre-Load and Clearance in Rotational Direction | unit/ $\mu$ m |
|----------------------------------------------------------|---------------|
|----------------------------------------------------------|---------------|

| part number | standard     | light (T1)   | medium (T2)   |  |  |
|-------------|--------------|--------------|---------------|--|--|
| SSP 4       |              |              |               |  |  |
| SSP 6       | $-2 \sim +1$ | $-6 \sim -2$ | _             |  |  |
| SSP 8       |              |              | _             |  |  |
| SSP 10      |              |              |               |  |  |
| SSP 13A     | -3~+1        | -9~-3        | $-12 \sim -7$ |  |  |
| SSP 16A     |              |              | =13.0-7       |  |  |
| SSP 20A     |              |              |               |  |  |
| SSP 20      | -4~+2        | -12~-4       |               |  |  |
| SSP 25A     |              |              | -20~-12       |  |  |
| SSP 25      |              |              |               |  |  |
| SSP 30      |              |              |               |  |  |
| SSP 40      |              |              |               |  |  |
| SSP 50      |              | -1906        | -20019        |  |  |
| SSP 60      | -0.2+3       | -10~-0       | -30-3-18      |  |  |
| SSP 80(L)   |              |              |               |  |  |
| SSP100(L)   | -8~+4        | -24~-8       | -40~-24       |  |  |

#### Table B-8 Operating Condition and Pre-Load

| pre-load | pre-load<br>symbol | operating condition                                                                                  |
|----------|--------------------|------------------------------------------------------------------------------------------------------|
| standard | -                  | Minute vibration is applied. A precise motion is required. A torque in a given direction is applied. |
| light    | T1                 | Slight vibration is applied. Slight torsional load is applied. Cyclic torque is applied              |
| medium   | T2                 | Shock/vibration is applied. Over-hang<br>load is applied. Torsional load is applied.                 |



## LIFE CALCULATION

Because ball elements are used as the rolling elements in ball splines, the following equations are used to calculate the life of ball spline systems.



$$L=\left(\frac{fc}{fw}\cdot\frac{C}{P}\right)^{3}\cdot 50$$

For torsional load

$$L=\left(\frac{fc}{fw}\cdot\frac{C_{T}}{T}\right)^{3}\cdot 50$$

L : travel life (km)

- fc : contact coefficient
- fw: Load coefficient C : basic dynamic load rating(N)
- P : load(N)  $C_T : basic dynamic torque rating(N-m)$
- T : torque(N-m)
- \* Refer to page Eng-5 for coefficients
- \*\* The rated load for the commercial spline shaft is approximately 70% of the standard ball spline shaft.

## **OPERATING ENVIRONMENT**

Figure B-3 Radial Loading and Torque Loading





#### **Dust Prevention:**

The invasion of foreign particles and dust may affect the motion characteristics and shorten the life of a ball spline. Seals will perform well under normal operating conditions. However, they may not prevent the entry of foreign particles in a hostile environment. When used in such an environment, the ball spline should be protected using bellows and protective covers.

#### **Operating Temperature:**

The ball retainers used in ball spline nuts are made of resin, so the operating temperature should never exceed 80°C.

Figure B-4 Examples of Dust Prevention Methods



#### **Excessive Moment:**

The allowable load for ball splines is high, and they can also sustain high moment load. However, when the load becomes excessive, the load applied to the raceway grooves becomes unbalanced and stable motion may not be achieved. When accuracy is required, the application of excessive moment should be prevented by using two or more spline nuts.

# TINE TOPBALL® PRODUCTS

SLIDE SCREW

## LUBRICATION

Both ends of the spline nut have a side-seal as a standard feature. For the fully ground spline shaft, the side-seals are positioned against the spline shaft so as to prevent the lubricant from leaking out of the spline nut.

Lithium soap grease is applied to NB ball spline nuts before shipping, so there is no need to apply lubricant at the time of installation. However, a small amount of lubricant may be lost during operation, so the lubricant needs to be replenished periodically. Figure B-5 Example of Lubrication Mechanism



## SPECIAL REQUIREMENTS

NB will fablicate custom shafts, spline nut, surface finish, etc. to meat customer requirements.

For hollow spline shafts, recommended standard inner diameters are listed in Table B-9. Contact NB for details.

Figure B-6 Example of End-Machining



Table B-9 Recommended Inner Diameter for Hollow Spline Shaft

| part number | shaft<br>diameter<br>Ds<br>mm | inner<br>diameter<br>d<br>mm | cross-<br>sectional<br>coefficient<br>Z<br>mm <sup>3</sup> | second<br>moment of<br>inertia<br>I<br>mm⁴ |
|-------------|-------------------------------|------------------------------|------------------------------------------------------------|--------------------------------------------|
| SSP 4       | 4                             | 1.5                          | 5.7                                                        | 11                                         |
| SSP 6       | 6                             | 2                            | 19.4                                                       | 58                                         |
| SSP 8       | 8                             | 3                            | 46.5                                                       | 186                                        |
| SSP 10      | 10                            | 4                            | 89.6                                                       | 448                                        |
| SSP 13A     | 13                            | 6                            | 193                                                        | 1,260                                      |
| SSP 16A     | 16                            | 8                            | 348                                                        | 2,780                                      |





### MOUNTING

#### Fit:

A transition fit between an SSP/SSPM-type spline nut and its housing bore is used to minimize the clearance. If high accuracy is not required, then a clearance fit is used.

For the SSP/SSPM type spline nuts, if only a light load is to be applied, a hole slightly larger than the outer diameter of the nut will suffice.

#### **Insertion of Spline Nut:**

When inserting a spline nut into the housing, use a jig, example as shown in Figure B-7. Carefully insert the nut so as not to hit the side ring and side-seal.

| part number | D    | d    | part number | D    | d    |
|-------------|------|------|-------------|------|------|
| SSP 4       | 9.5  | 3.5  | SSP 25      | 36.5 | 20.5 |
| SSP 6       | 13.5 | 5    | SSP 30      | 44.5 | 25   |
| SSP 8       | 15.5 | 7    | SSP 40      | 59.5 | 33   |
| SSP10       | 20.5 | 8.5  | SSP 50      | 74   | 41   |
| SSP13A      | 23.5 | 12   | SSP 60      | 89   | 50   |
| SSP16A      | 30.5 | 14.5 | SSP 80      | 110  | 74   |
| SSP20A      | 34.5 | 18   | SSP 80L     | 119  | 74   |
| SSP20       | 31.5 | 16.5 | SSP100      | 1.40 | 00   |
| SSP25A      | 41.5 | 22.5 | SSP100L     | 149  | 92   |

Table B-11 Recommended Jig Dimensions unit/mm

#### **Insertion of Spline Shaft:**

Insertion of Spline Shaft: When inserting the spline shaft into the spline nut, ensure that the ball elements do not drop out. This is accomplished by aligning the raceway grooves of the shaft with the rows of ball elements in the nut. Then simply insert the spline shaft through the spline nut.

#### Table B-10 Fit for the Spline Nut

| type of spline nut | clearance fit | transition fit |  |  |
|--------------------|---------------|----------------|--|--|
| SSP                | LI <b>7</b>   | 16             |  |  |
| SSPM               |               | Jo             |  |  |

Figure B-7 Insertion of Spline Nute into Housing



# TOPBALL® PRODUCTS

## SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

ACTUATOR

SLIDE SCREW

#### Mounting of SSP Type Spline:

Example methods for installing the SSP type spline are shown in Figures B-8 and B-9.

Figure B-8 Using a Retaining Ring



#### Key:

The SSP type spline comes with a key, as shown in Figure B-10.

| Table B-12 | Maior | Dimensions | of Kev | (SSP | Type) |
|------------|-------|------------|--------|------|-------|
|            | major | Dimensions | 011109 | 1001 | , oqu |

|             | á   | a         | ŀ   | 1         | L1   | R    | k   |
|-------------|-----|-----------|-----|-----------|------|------|-----|
| part number |     | tolerance |     | tolerance |      |      |     |
|             | mm  | μm        | mm  | μm        | mm   | mm   | mm  |
| SSP 4       | 2   |           | 2   |           | 6    | 1    |     |
| SSP 6       | 2.5 | +16       | 2.5 | 0         | 10.5 | 1.25 |     |
| SSP 8       | 2.5 |           | 2.5 |           | 10.5 | 1.25 | 0.2 |
| SSP 10      | 3   | o         | 3   | -25       | 13   | 1.5  | 0.2 |
| SSP 13A     | 3   |           | 3   |           | 15   | 1.5  |     |
| SSP 16A     | 3.5 |           | 3.5 |           | 17.5 | 1.75 |     |
| SSP 20A     |     | +24       |     | 0         | 29   |      | 0.5 |
| SSP 20      | 4   | 1 24      | 4   | 20        | 26   | 2    | 0.2 |
| SSP 25A     |     | ± 12      |     | -30       | 36   |      | 0.3 |
| SSP 25      | 5   |           | 5   |           | 33   | 2.5  | 0.2 |
| SSP 30      | 7   | +30       | 7   | 0         | 41   | 3.5  | 0.3 |
| SSP 40      | 10  | +15       | 8   | 20        | 55   | 5    |     |
| SSP 50      | 15  |           | 10  | - 36      | 60   | 7.5  |     |
| SSP 60      | 18  | +36       | 11  | 0/-43     | 68   | 9    | 0.5 |
| SSP 80      | 16  | +18       | 10  | 0         | 76   | 0    |     |
| SSP 80L     | סו  |           | 10  | -36       | 110  | 0    |     |
| SSP100      | 20  | +43       | 10  | 0         | 110  | 10   | 0.9 |
| SSP100L     | 20  | +22       | 15  | -43       | 160  | 10   | 0.8 |

#### Figure B-9 Using a Push Plate



#### Figure B-10 Key for SSP Type Spline



## NB

#### Mounting of SSPM Type Spline:

Example methods for installing the SSPM spline are shown in Figures B-11 to B-14.

Figure B-11 Using an F Type Lock Plate



Figure B-13 Using a Special Lock Plate (1)







Figure B-14 Using a Special Lock Plate (2)



# TOPBALL® PRODUCTS

#### F Type Lock Plate (Standard Part):

The lock plate shown in Figure B-15 is provided with the SSPM spline.

#### Material: SUS304CSP

| Table B-13 F | Table B-13 F Type Lock Plate |         |         |         |                       |  |  |  |  |  |  |  |
|--------------|------------------------------|---------|---------|---------|-----------------------|--|--|--|--|--|--|--|
| part number  | K<br>mm                      | G<br>mm | t<br>mm | R<br>mm | applicable spline nut |  |  |  |  |  |  |  |
| FP 6         | 6.8                          | 2.9     | 1.0     | 0.5     | SSPM 6                |  |  |  |  |  |  |  |
| FP 8         | 8.5                          | 3.5     | 1.2     | 0.5     | SSPM 8                |  |  |  |  |  |  |  |
| FP10         | 8.5                          | 3.5     | 1.2     | 0.5     | SSPM10                |  |  |  |  |  |  |  |



Figure B-15 F Type Lock Plate



#### LP Type Lock Plate (Purchased Separately):

An LP type lock plate is also available for use with the SSPM spline. Material: SUS304CSP

Figure B-16 LP Type Lock Plate



|             |      | lock | plate maj | or dimens | sions |     | mach | ined hous | ing dimer | nsions |                       |
|-------------|------|------|-----------|-----------|-------|-----|------|-----------|-----------|--------|-----------------------|
| part number | К    | G    | t         | R         | Х     | Y   | В    | E         | Gм        | М      | applicable spline nut |
|             | mm   | mm   | mm        | mm        | mm    | mm  | mm   | mm        | mm        |        |                       |
| LP 6        | 8.6  | 3.6  | 1.0       | 1         | 5.85  | 7.8 | 11.1 | 3.3       | 3.5       | M2.5   | SSPM 6                |
| LP 8        | 9.15 | 4.3  | 1.2       | 1         | 6.45  | 9.2 | 12.3 | 4.0       | 4.2       | M3     | SSPM 8                |
| LP10        | 9.15 | 4.3  | 1.2       | 1         | 6.45  | 9.2 | 14.8 | 4.0       | 4.2       | M3     | SSPM10                |

## NB

#### Mounting of SSPF Type Spline:

Example methods for installing the SSPF spline are shown in Figure B-17.

Figure B-17 Example Methods for installing SSPF Type Spline



#### Mounting of SSPT Spline:

Example methods for installing the SSPT spline are shown in Figure B-18.

Figure B-18 Example Methods for installing SSPT Type Spline



## 

#### Mounting of Block Type Spline:

Example methods for installing the block spline are shown in Figure B-19.







## SSP TYPE

#### - Cylindrical Spline Nut -







|          |               |     |           |     |           | l     | major di | mensions    |       |                |     |      |           |
|----------|---------------|-----|-----------|-----|-----------|-------|----------|-------------|-------|----------------|-----|------|-----------|
| part r   | number        |     | D         | L   |           | В     |          | b           | t     | L <sub>1</sub> | d   | [    | Ds        |
|          |               |     | tolerance |     | tolerance |       |          | tolerance   | +0.05 |                |     |      | tolerance |
| standard | anticorrosion | mm  | μm        | mm  | mm        | mm    | mm       | μm          | mm    | mm             | mm  | mm   | μm        |
| SSP 4    | SSPS 4        | 10  | 0/-9      | 16  |           |       | 2        |             | 1.2   | 6              | -   | 4    | 0         |
| SSP 6    | SSPS 6        | 14  | 0         | 25  |           |       | 2.5      | <b>1</b> 11 | 1.2   | 10.5           | 1   | 6    | -12       |
| SSP 8    | SSPS 8        | 16  | -11       | 25  |           |       | 2.5      |             | 1.2   | 10.5           | 1.5 | 8    | 0         |
| SSP 10   | SSPS 10       | 21  | 0         | 33  | 0         |       | 3        | Ŭ           | 1.5   | 13             | 1.5 | 10   | -15       |
| SSP 13A  | SSPS 13A      | 24  | -13       | 36  | -0.2      |       | 3        |             | 1.5   | 15             | 1.5 | 13   | 0         |
| SSP 16A  | SSPS 16A      | 31  | _         | 50  | _         |       | 3.5      | _           | 2     | 17.5           | 2   | 16   | -18       |
| SSP 20A  | SSPS 20A      | 35  |           | 63  |           | _     | 4        | <b>1</b> 10 | 2.5   | 29             | 2   | 20   |           |
| SSP 20   | SSPS 20       | 32  | 0         | 60  |           |       | 4        | 0           | 2.5   | 26             | 2   | 18.2 | 0         |
| SSP 25A  | SSPS 25A      | 42  | -16       | 71  |           |       | 4        |             | 2.5   | 36             | 3   | 25   | -21       |
| SSP 25   | SSPS 25       | 37  | _         | 70  | _         |       | 5        |             | 3     | 33             | 3   | 23   | 21        |
| SSP 30   | -             | 45  |           | 80  | 0         |       | 7        | +22         | 4     | 41             | 3   | 28   |           |
| SSP 40   | _             | 60  | 0         | 100 | -0.3      |       | 10       | 0           | 4.5   | 55             | 4   | 37.4 | 0         |
| SSP 50   | _             | 75  | -19       | 112 |           |       | 15       | _           | 5     | 60             | 4   | 47   | -25       |
| SSP 60   | _             | 90  | 0         | 127 |           |       | 18       | +27         | 6     | 68             | 4   | 56.5 | 0         |
| SSP 80   | _             | 120 | -22       | 160 |           | 118.2 | 16       | 0           | 6     | 76             | 5   | 80   | -30       |
| SSP 80L  | -             | 120 |           | 217 | _         | 175.2 | 10       |             | 0     | 110            | 5   | 00   |           |
| SSP100   | -             | 150 | 0         | 185 | -         | 132.6 | 20       | +33         | 7     | 110            | 5   | 100  | 0         |
| SSP100L  | —             | 150 | -25       | 248 |           | 195.6 | 20       | 0           | 1     | 160            | 5   | 100  | -35       |

Mo1



SLIDE BUSH

SLIDE UNIT

STROKE BUSH

SLIDE SHAFT

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

ACTUATOR

SLIDE SCREW

| 1kN≒102kgf | 1N • m≒0.102kgf • m |
|------------|---------------------|
|------------|---------------------|



| basic tore | que rating | basic loa | d rating | allowable static moment |        | second cross-          | cross-                 | mass   |       |             |
|------------|------------|-----------|----------|-------------------------|--------|------------------------|------------------------|--------|-------|-------------|
| dynamic    | static     | dynamic   | static   | allowable St            |        | sectional<br>moment of | sectional              | nut    | shaft | port number |
| Ст         | Сот        | С         | Со       | <b>M</b> 01             | M02    | inertia                | coefficient            |        |       | part number |
| N۰m        | N•m        | kN        | kN       | N۰m                     | N۰m    | mm⁴                    | mm³                    | kg     | kg/m  |             |
| 0.74       | 1.05       | 0.86      | 1.22     | 1.97                    | 10.3   | 1.18×10                | 5.90                   | 0.0065 | 0.10  | SSP 4       |
| 1.5        | 2.4        | 1.22      | 2.28     | 5.1                     | 40     | 5.9 ×10                | 1.97×10                | 0.019  | 0.21  | SSP 6       |
| 2.1        | 3.7        | 1.45      | 2.87     | 7.4                     | 50     | 1.9 ×10 <sup>2</sup>   | 4.76×10                | 0.023  | 0.38  | SSP 8       |
| 4.4        | 8.2        | 2.73      | 5.07     | 18.0                    | 116    | 4.61 × 10 <sup>2</sup> | 9.22×10                | 0.054  | 0.60  | SSP 10      |
| 21         | 39.2       | 2.67      | 4.89     | 13.7                    | 109    | $1.38 \times 10^{3}$   | 2.13×10 <sup>2</sup>   | 0.07   | 1.0   | SSP 13A     |
| 60         | 110        | 6.12      | 11.2     | 46                      | 299    | $2.98 \times 10^{3}$   | 3.73×10 <sup>2</sup>   | 0.15   | 1.5   | SSP 16A     |
| 105        | 194        | 8.9       | 16.3     | 110                     | 560    | $7.35 \times 10^{3}$   | 7.34 × 10 <sup>2</sup> | 0.22   | 2.4   | SSP 20A     |
| 83         | 133        | 7.84      | 11.3     | 63                      | 500    | $5.05 \times 10^{3}$   | $5.54 \times 10^{2}$   | 0.20   | 2.0   | SSP 20      |
| 189        | 346        | 12.8      | 23.4     | 171                     | 1,029  | 1.79×10⁴               | $1.43 \times 10^{3}$   | 0.33   | 3.7   | SSP 25A     |
| 162        | 239        | 12.3      | 16.1     | 104                     | 830    | 1.27×10⁴               | 1.11×10 <sup>3</sup>   | 0.22   | 3.1   | SSP 25      |
| 289        | 412        | 18.6      | 23.2     | 181                     | 1,470  | 2.75×10⁴               | $1.96 \times 10^{3}$   | 0.35   | 4.8   | SSP 30      |
| 637        | 882        | 30.8      | 37.5     | 358                     | 2,940  | 8.73×10⁴               | $4.67 \times 10^{3}$   | 0.81   | 8.6   | SSP 40      |
| 1,390      | 3,180      | 46.1      | 74.2     | 696                     | 4,400  | 2.16×10⁵               | 9.21 × 10 <sup>3</sup> | 1.5    | 13.1  | SSP 50      |
| 2,100      | 4,800      | 58.0      | 127      | 1,300                   | 8,800  | 4.51 × 10⁵             | 1.60×10⁴               | 2.5    | 19    | SSP 60      |
| 3,860      | 6,230      | 83.1      | 134      | 2,000                   | 11,100 | 1 02 × 106             | 1 29 × 10 <sup>5</sup> | 5.1    | 20    | SSP 80      |
| 5,120      | 9,340      | 110       | 201      | 4,410                   | 21,100 | 1.93 × 10              | 4.30 × 10              | 7.6    | 39    | SSP 80L     |
| 6,750      | 11,570     | 135       | 199      | 3,360                   | 19,300 | 1 60 × 10 <sup>6</sup> | 0.29 × 105             | 9.7    | 61    | SSP100      |
| 8,960      | 17,300     | 179       | 298      | 7,340                   | 37,700 | 4.09 ~ 10              | 9.36 ~ 10              | 13.9   | 01    | SSP100L     |



## SSPM TYPE

- Keyless Spline Nut -







|             | major dimensions |           |    |                                          |     |     |     |      |     |      |      |     |     |
|-------------|------------------|-----------|----|------------------------------------------|-----|-----|-----|------|-----|------|------|-----|-----|
| port number | D                |           |    | L                                        |     | W   | С   | A    | d   | В    | н    | K   | G   |
| part number |                  | tolerance |    | tolerance                                |     |     |     |      |     |      |      |     |     |
|             | mm               | μm        | mm | mm                                       | mm  | mm  | mm  | mm   | mm  | mm   | mm   | mm  | mm  |
| SSPM 6      | 14               | 0         | 25 |                                          | 2.2 | 1.1 | 1.0 | 12.0 | 1   | 9.4  | 25.6 | 6.8 | 2.9 |
| SSPM 8      | 16               | -11       | 25 | $\begin{bmatrix} 0 \\ -02 \end{bmatrix}$ | 2.7 | 1.3 | 1.2 | 13.6 | 1.5 | 11   | 30.6 | 8.5 | 3.5 |
| SSPM10      | 21               | 0/-13     | 33 | 0.2                                      | 2.7 | 1.3 | 1.2 | 18.6 | 1.5 | 13.5 | 35.6 | 8.5 | 3.5 |



SLIDE UNIT

STROKE BUSH SLIDE ROTARY BUSH

SLIDE SHAFT

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

ACTUATOR

SLIDE SCREW

|      | ass   | ma    | cross-      | second                 | allowable static |      | basic load rating |         | ue rating | basic torc |           |    |     |  |
|------|-------|-------|-------------|------------------------|------------------|------|-------------------|---------|-----------|------------|-----------|----|-----|--|
| par  | aboft | put   | sectional   | sectional              | ment             | mo   | static            | dynamic | static    | dynamic    | Ds        | C  | t   |  |
| num  | snan  | nut   | coenticient | inertia                | M02              | M01  | Со                | С       | Сот       | Ст         | tolerance |    |     |  |
|      | kg/m  | kg    | mm³         | mm⁴                    | N۰m              | N۰m  | kN                | kN      | N•m       | N۰m        | μm        | mm | mm  |  |
| SSPI | 0.21  | 0.019 | 1.97×10     | 5.9 ×10                | 40               | 5.1  | 2.28              | 1.22    | 2.4       | 1.5        | 0/-12     | 6  | 1.0 |  |
| SSPI | 0.38  | 0.023 | 4.76×10     | 1.9 × 10 <sup>2</sup>  | 50               | 7.4  | 2.87              | 1.45    | 3.7       | 2.1        | 0         | 8  | 1.2 |  |
| SSP  | 0.60  | 0.054 | 9.22×10     | 4.61 × 10 <sup>2</sup> | 116              | 18.0 | 5.07              | 2.73    | 8.2       | 4.4        | - 15      | 10 | 1.2 |  |



| B-1 | 9 |  |
|-----|---|--|



## SSPF TYPE

- Flange Type Nut -







|          |               |    |           |     |           |     | major c | limensions |                           |      |     |
|----------|---------------|----|-----------|-----|-----------|-----|---------|------------|---------------------------|------|-----|
| part r   | number        |    | D         |     | L         | Df  | Н       | P.C.D.     | $d_1 \times d_2 \times h$ | W    | d   |
|          |               |    | tolerance |     | tolerance |     |         |            |                           |      |     |
| standard | anticorrosion | mm | μm        | mm  | mm        | mm  | mm      | mm         | mm                        | mm   | mm  |
| SSPF 6   | SSPFS 6       | 14 | 0         | 25  |           | 30  | 5       | 22         | 3.4×6.5×3.3               | 7.5  | 1   |
| SSPF 8   | SSPFS 8       | 16 | -11       | 25  |           | 32  | 5       | 24         | 3.4×6.5×3.3               | 7.5  | 1.5 |
| SSPF10   | SSPFS10       | 21 | 0         | 33  |           | 42  | 6       | 32         | 4.5×8×4.4                 | 10.5 | 1.5 |
| SSPF13A  | SSPFS13A      | 24 | -13       | 36  | -0.2      | 43  | 7       | 33         | 4.5×8×4.4                 | 11   | 1.5 |
| SSPF16A  | SSPFS16A      | 31 |           | 50  | 0.2       | 50  | 7       | 40         | 4.5×8×4.4                 | 18   | 2   |
| SSPF20A  | SSPFS20A      | 35 |           | 63  |           | 58  | 9       | 45         | 5.5×9.5×5.4               | 22.5 | 2   |
| SSPF20   | SSPFS20       | 32 | 0         | 60  |           | 51  | 7       | 40         | 4.5×8×4.4                 | 23   | 2   |
| SSPF25A  | SSPFS25A      | 42 | -16       | 71  |           | 65  | 9       | 52         | 5.5×9.5×5.4               | 26.5 | 3   |
| SSPF25   | SSPFS25       | 37 |           | 70  |           | 60  | 9       | 47         | 5.5×9.5×5.4               | 26   | 3   |
| SSPF30   | -             | 45 |           | 80  | 0         | 70  | 10      | 54         | 6.6×11×6.5                | 30   | 3   |
| SSPF40   | -             | 60 | 0         | 100 | -0.3      | 90  | 14      | 72         | 9×14×8.6                  | 36   | 4   |
| SSPF50   | —             | 75 | -19       | 112 |           | 113 | 16      | 91         | 11×17.5×11                | 40   | 4   |
| SSPF60   | _             | 90 | 0/-22     | 127 |           | 129 | 18      | 107        | 11×17.5×11                | 45.5 | 4   |

SLIDE GUIDE

BALL SPLINE

Z

TOPBALL® PRODUCTS

SLIDE BUSH

SLIDE UNIT

STROKE BUSH SLIDE ROTARY BUSH

SLIDE SHAFT

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE



|      |                                          | basic tore | que rating | basic loa | ad rating | allowabl | e static | second                 |                      | ma    | ass   |             |
|------|------------------------------------------|------------|------------|-----------|-----------|----------|----------|------------------------|----------------------|-------|-------|-------------|
| C    | D <sub>s</sub>                           | dvnamic    | static     | dvnamic   | static    | mon      | nent     | cross-<br>sectional    | cross-<br>sectional  | nut   | shaft |             |
|      | tolerance                                | Ст         | Сот        | С         | Со        | M01      | M02      | moment of<br>inertia   | coefficient          |       |       | part number |
| mm   | μm                                       | N۰m        | N۰m        | kN        | kN        | N۰m      | N۰m      | mm⁴                    | mm₃                  | kg    | kg/m  |             |
| 6    | 0/-12                                    | 1.5        | 2.4        | 1.22      | 2.28      | 5.1      | 40       | 5.9 ×10                | 1.97×10              | 0.037 | 0.21  | SSPF 6      |
| 8    | 0                                        | 2.1        | 3.7        | 1.45      | 2.87      | 7.4      | 50       | 1.9 × 10 <sup>2</sup>  | 4.76×10              | 0.042 | 0.38  | SSPF 8      |
| 10   | -15                                      | 4.4        | 8.2        | 2.73      | 5.07      | 18.0     | 116      | 4.61 × 10 <sup>2</sup> | 9.22×10              | 0.094 | 0.6   | SSPF10      |
| 13   | 0                                        | 21         | 39.2       | 2.67      | 4.89      | 13.7     | 109      | 1.38×10 <sup>3</sup>   | $2.13 \times 10^{2}$ | 0.1   | 1     | SSPF13A     |
| 16   | -18                                      | 60         | 110        | 6.12      | 11.2      | 46       | 299      | 2.98×10 <sup>3</sup>   | $3.73 \times 10^{2}$ | 0.2   | 1.5   | SSPF16A     |
| 20   |                                          | 105        | 194        | 8.9       | 16.3      | 110      | 560      | 7.35 × 10 <sup>3</sup> | $7.34 \times 10^{2}$ | 0.33  | 2.4   | SSPF20A     |
| 18.2 |                                          | 83         | 133        | 7.84      | 11.3      | 63       | 500      | 5.05 × 10 <sup>3</sup> | $5.54 \times 10^{2}$ | 0.22  | 2     | SSPF20      |
| 25   | $\begin{bmatrix} 0 \\ -21 \end{bmatrix}$ | 189        | 346        | 12.8      | 23.4      | 171      | 1,029    | 1.79×10⁴               | 1.43×10 <sup>3</sup> | 0.45  | 3.7   | SSPF25A     |
| 23   |                                          | 162        | 239        | 12.3      | 16.1      | 104      | 830      | 1.27×10⁴               | 1.11×10 <sup>3</sup> | 0.32  | 3.1   | SSPF25      |
| 28   |                                          | 289        | 412        | 18.6      | 23.2      | 181      | 1,470    | 2.75×10⁴               | 1.96×10 <sup>3</sup> | 0.51  | 4.8   | SSPF30      |
| 37.4 | 0                                        | 637        | 882        | 30.8      | 37.5      | 358      | 2,940    | 8.73×10 <sup>4</sup>   | $4.67 \times 10^{3}$ | 1.15  | 8.6   | SSPF40      |
| 47   | -25                                      | 1,390      | 3,180      | 46.1      | 74.2      | 696      | 4,400    | 2.16×10⁵               | 9.21×10 <sup>3</sup> | 2.1   | 13.1  | SSPF50      |
| 56.5 | 0/-30                                    | 2,100      | 4,800      | 58.0      | 127       | 1,300    | 8,800    | 4.51 × 10⁵             | 1.60×10⁴             | 3.3   | 19    | SSPF60      |

1kN≒102kgf 1N • m≒0.102kgf • m

ACTUATOR



## SSPT TYPE

- Two Side Cut Flange Type -







|             |    |                   |    |                 |    | major | dimensio | ns     |                           |      |     |
|-------------|----|-------------------|----|-----------------|----|-------|----------|--------|---------------------------|------|-----|
|             | [  | D                 | L  |                 | Df | В     | Н        | P.C.D. | $d_1 \times d_2 \times h$ | W    | d   |
| part number | mm | tolerance $\mu$ m | mm | tolerance<br>mm | mm | mm    | mm       | mm     | mm                        | mm   | mm  |
|             |    |                   |    |                 |    |       |          |        |                           |      |     |
| SSPT 6      | 14 | 0                 | 25 |                 | 30 | 18    | 5        | 22     | 3.4×6.5×3.3               | 7.5  | 1   |
| SSPT 8      | 16 | -11               | 25 | -02             | 32 | 21    | 5        | 24     | 3.4×6.5×3.3               | 7.5  | 1.5 |
| SSPT10      | 21 | 0/-13             | 33 | 0.2             | 42 | 25    | 6        | 32     | 4.5×8×4.4                 | 10.5 | 1.5 |

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

ACTUATOR

| : | static<br>Co | mon<br>Mo1 | nent<br>Mo2 | sectional<br>moment of<br>inertia | cross-<br>sectional<br>coefficient | nut   | shaft |  |
|---|--------------|------------|-------------|-----------------------------------|------------------------------------|-------|-------|--|
|   | kN           | N N·m N·m  |             | mm⁴                               | mm₃                                | kg    | kg/m  |  |
|   | 2.28         | 5.1        | 40          | 5.9 ×10                           | 1.97×10                            | 0.029 | 0.21  |  |
|   | 2.87         | 7.4        | 50          | 1.9 ×10 <sup>2</sup>              | 4.76×10                            | 0.035 | 0.38  |  |
|   | 5 07         | 18.0       | 116         | $4.61 \times 10^{2}$              | 9 22 X 10                          | 0 075 | 0.6   |  |

second

croce.

Mo1

m≒0.102kgf • m

part number

SSPT 6

SSPT 8

SSPT10

mass

| moun  | ting hole x 2  | H W                                          |                   |
|-------|----------------|----------------------------------------------|-------------------|
|       |                | <u>→ h</u>                                   | 2-d<br>(oil hole) |
|       | <u> </u>       |                                              |                   |
|       |                |                                              |                   |
|       |                |                                              |                   |
|       | — ĭa [].<br>[] |                                              |                   |
|       |                |                                              | v                 |
|       | <u> </u>       |                                              |                   |
|       | ¥              |                                              |                   |
| < B → |                | <u>جــــــــــــــــــــــــــــــــــــ</u> | >                 |
|       |                |                                              |                   |
|       |                |                                              |                   |

basic torque rating

static

Сот

N•m

2.4

3.7

dynamic

Ст

N•m

1.5

2.1

 $\mathsf{D}_{\mathsf{S}}$ 

mm

6

8

10

tolerance

 $\mu$  m

0/-12

0

basic load rating

dynamic

С

kΝ

1.22

1.45

| -15 | 4.4 | 8.2 | 2.73 | 5.07 | 18.0 | 116 | $4.61 \times 10^{2}$ | 9.22×10 | 0.075   | 0.6   |
|-----|-----|-----|------|------|------|-----|----------------------|---------|---------|-------|
|     |     |     |      |      |      |     |                      | 1kN     | l≒102kg | f 1N• |
|     |     |     |      |      |      |     |                      |         |         |       |
|     |     |     |      |      |      |     |                      |         |         |       |
|     |     |     |      |      |      |     |                      |         |         |       |
|     |     |     |      |      |      |     |                      |         |         |       |
|     |     |     |      |      |      |     |                      |         |         |       |
|     |     |     |      |      |      |     |                      |         |         |       |

allowable static



## SPA TYPE

#### - Keyless Block Type -

| part number structure<br>example <b>SPA</b> 10 - 2 - T1 - 20 |                           |
|--------------------------------------------------------------|---------------------------|
| SPA type                                                     |                           |
| nominal<br>diameter                                          |                           |
| number of nuts attached to one shaft                         | with special              |
| pre-load symbol                                              | specification             |
| blank standard<br>T1 light                                   | spline shaft total length |
|                                                              |                           |





| major dimensions |                            |                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| h                | E                          | W                                                                                                                | L                                                                                                                                                                      | F                                                                                                                                                                                                                            | L1                                                                                                                                                                                                                                                                                 | Т                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                  |                            |                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| mm               | mm                         | mm                                                                                                               | mm                                                                                                                                                                     | mm                                                                                                                                                                                                                           | mm                                                                                                                                                                                                                                                                                 | mm                                                                                                                                                                                                                                                                                                                                                          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| q                | 12.5                       | 25                                                                                                               | 25                                                                                                                                                                     | 18                                                                                                                                                                                                                           | 22.5                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5                | 12.0                       | 20                                                                                                               | 20                                                                                                                                                                     | 10                                                                                                                                                                                                                           | 22.0                                                                                                                                                                                                                                                                               | 7.2                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10               | 14                         | 28                                                                                                               | 25                                                                                                                                                                     | 20                                                                                                                                                                                                                           | 22                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 12.5             | 16.5                       | 33                                                                                                               | 33                                                                                                                                                                     | 25                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                  | h<br>mm<br>9<br>10<br>12.5 | h         E           mm         mm           9         12.5           10         14           12.5         16.5 | h         E         W           mm         mm         mm           9         12.5         25           10         14         28           12.5         16.5         33 | h         E         W         L           mm         mm         mm         mm           9         12.5         25         25           10         14         28         25           12.5         16.5         33         33 | h         E         W         L         F           mm         mm         mm         mm         mm           9         12.5         25         25         18           10         14         28         25         20           12.5         16.5         33         33         25 | major           h         E         W         L         F         L,           mm         mm         mm         mm         mm         mm           9         12.5         25         25         18         22.5           10         14         28         25         20         22           12.5         16.5         33         33         25         30 | h         E         W         L         F         L1         T           mm         mm | h         E         W         L         F         L1         T         B           mm         mm | h         E         W         L         F         L1         T         B         C           mm         mm | h         E         W         L         F         L1         T         B         C         S           mm         MM | h         E         W         L         F         L1         T         B         C         S         l           mm         mm |  |





|   |    |           | basic toro | que rating | basic loa | ad rating | allowab | allowable static |                        | orocc          | mass  |           |        |       |      |
|---|----|-----------|------------|------------|-----------|-----------|---------|------------------|------------------------|----------------|-------|-----------|--------|-------|------|
|   | C  | )s        | dynamic    | static     | dynamic   | static    | mor     | moment           |                        | ient sectional |       | sectional | put    | aboft | part |
|   |    | tolerance | Ст         | Сот        | С         | Co        | M01     | M02              | inertia                | coefficient    | nut   | Shan      | number |       |      |
|   | mm | μm        | N۰m        | N۰m        | kN        | kN        | N・m     | N۰m              | mm⁴                    | mm³            | kg    | kg/m      |        |       |      |
|   | 6  | 0/-12     | 1.5        | 2.4        | 1.22      | 2.28      | 5.1     | 40               | 5.9 ×10                | 1.97×10        | 0.035 | 0.21      | SPA 6  |       |      |
|   | 8  | 0         | 2.1        | 3.7        | 1.45      | 2.87      | 7.4     | 50               | 1.9 × 10 <sup>2</sup>  | 4.76×10        | 0.042 | 0.38      | SPA 8  |       |      |
|   | 10 | -15       | 4.4        | 8.2        | 2.73      | 5.07      | 18      | 116              | 4.61 × 10 <sup>2</sup> | 9.22×10        | 0.088 | 0.6       | SPA10  |       |      |
| _ |    |           |            |            |           |           |         |                  |                        |                |       |           |        |       |      |

1kN≒102kgf 1N • m≒0.102kgf • m



## **SPA-W TYPE**

#### - Keyless Block Double Type -

| part numb<br>example si | er structu | ire | 1 - 20 | 00 / C  | U                  |
|-------------------------|------------|-----|--------|---------|--------------------|
|                         |            |     |        |         |                    |
|                         |            |     |        |         |                    |
|                         |            |     |        |         | with special       |
| SPA type                |            |     |        |         | specification      |
| nominal<br>diameter     |            |     |        | spline  | shaft total length |
| double wide to          |            |     |        | pre-loa | ad symbol          |
| double-wide ty          | pe         |     |        | blank   | standard           |
| to one shaft            | sattached  |     |        | T1      | light              |
|                         |            |     |        |         |                    |



|                |      | major dimensions |    |    |    |                |     |     |    |    |    |    |  |  |
|----------------|------|------------------|----|----|----|----------------|-----|-----|----|----|----|----|--|--|
| a satura da sa | h    | E                | W  | L  | F  | L <sub>1</sub> | Т   | Gw  | В  | С  | S  | l  |  |  |
| part number    |      |                  |    |    |    |                |     |     |    |    |    |    |  |  |
|                | mm   | mm               | mm | mm | mm | mm             | mm  | mm  | mm | mm |    | mm |  |  |
| SPA 6W         | 9    | 12.5             | 25 | 50 | 18 | 45             | 4.2 |     | 18 | 35 | M3 | 5  |  |  |
| SPA 8W         | 10   | 14               | 28 | 50 | 20 | 44             | 5   | 6.5 | 20 | 34 | M3 | 5  |  |  |
| SPA10W         | 12.5 | 16.5             | 33 | 66 | 25 | 60             | 7.5 |     | 25 | 50 | M4 | 6  |  |  |



|    |    |           | basic tore | que rating | basic loa | ad rating | allowable | second                 | cross-     | ma    | ass   |        |
|----|----|-----------|------------|------------|-----------|-----------|-----------|------------------------|------------|-------|-------|--------|
| D  | C  | )s        | dynamic    | static     | dynamic   | static    | moment    | sectional              | sectional  | put   | aboft | part   |
|    |    | tolerance | Ст         | Сот        | С         | Co        | M01       | inertia                | coenicient | nut   | Shan  | number |
| mm | mm | μm        | N۰m        | N۰m        | kN        | kN        | N۰m       | mm⁴                    | mm³        | kg    | kg/m  |        |
| 14 | 6  | 0/-12     | 3.0        | 4.8        | 1.98      | 4.56      | 40        | 5.9 ×10                | 1.97×10    | 0.072 | 0.21  | SPA 6W |
| 16 | 8  | 0         | 4.2        | 7.4        | 2.35      | 5.78      | 50        | 1.9 × 10 <sup>2</sup>  | 4.76×10    | 0.085 | 0.38  | SPA 8W |
| 21 | 10 | -15       | 8.8        | 16.4       | 4.42      | 10.14     | 116       | 4.61 × 10 <sup>2</sup> | 9.22×10    | 0.179 | 0.60  | SPA10W |

1kN≒102kgf 1N • m≒0.102kgf • m



## SSPB TYPE

- Block Type -

| SSPB type       with special         nominal       with special         diameter       specification         number of nuts attached       accuracy grade         pre-load symbol       blank |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pre-load symbol blank high                                                                                                                                                                    |
|                                                                                                                                                                                               |
| blank standard P precision                                                                                                                                                                    |
| T1 light                                                                                                                                                                                      |
| T2 medium spline shaft total length                                                                                                                                                           |





When two spline nuts are used in close contact.

|             |    | major dimensions |     |    |      |    |                |                |     |    |                |  |
|-------------|----|------------------|-----|----|------|----|----------------|----------------|-----|----|----------------|--|
| port number | h  | В                | L   | E  | b    | Т  | P <sub>1</sub> | P <sub>2</sub> | S   | l  | T <sub>1</sub> |  |
| part number |    |                  |     |    |      |    |                |                |     |    |                |  |
|             | mm | mm               | mm  | mm | mm   | mm | mm             | mm             |     | mm | mm             |  |
| SSPB20      | 19 | 48               | 60  | 24 | 35   | 8  | 35             | 35             | M6  | 12 | 5.5            |  |
| SSPB25      | 22 | 60               | 70  | 30 | 41.5 | 10 | 40             | 40             | M8  | 12 | 6              |  |
| SSPB30      | 26 | 70               | 80  | 35 | 50   | 12 | 50             | 50             | M8  | 12 | 7              |  |
| SSPB40      | 32 | 86               | 100 | 43 | 63   | 15 | 60             | 60             | M10 | 15 | 8              |  |





|      |           | basic toro | ue rating | basic loa | ad rating | allowabl | allowable static s |                      | orocc                  | mass |       |        |
|------|-----------|------------|-----------|-----------|-----------|----------|--------------------|----------------------|------------------------|------|-------|--------|
| C    | )s        | dynamic    | static    | dynamic   | static    | mon      | nent               | sectional            | sectional              | put  | aboft | part   |
|      | tolerance | Ст         | Сот       | С         | Со        | M01      | M02                | inertia              | nertia                 |      | Shart | number |
| mm   | μm        | N۰m        | N۰m       | kN        | kN        | N۰m      | N۰m                | mm⁴                  | mm³                    | kg   | kg/m  |        |
| 18.2 |           | 83         | 133       | 7.84      | 11.3      | 63       | 500                | $5.05 \times 10^{3}$ | $5.54 \times 10^{2}$   | 0.55 | 2.0   | SSPB20 |
| 23   | -21       | 162        | 239       | 12.3      | 16.1      | 104      | 830                | 1.27×10⁴             | 1.11×10 <sup>3</sup>   | 0.9  | 3.1   | SSPB25 |
| 28   | 21        | 289        | 412       | 18.6      | 23.2      | 181      | 1,470              | 2.75×10⁴             | 1.96×10 <sup>3</sup>   | 1.4  | 4.8   | SSPB30 |
| 37.4 | 0/-25     | 637        | 882       | 30.8      | 37.5      | 358      | 2,940              | 8.73×10⁴             | 4.67 × 10 <sup>3</sup> | 2.5  | 8.6   | SSPB40 |

1kN≒102kgf 1N • m≒0.102kgf • m



## STANDARD BALL SPLINE







|          |      |           | major dimensions |                            |     |     |     |       |       |       | applicable nut |            |            |            |    |            |            |
|----------|------|-----------|------------------|----------------------------|-----|-----|-----|-------|-------|-------|----------------|------------|------------|------------|----|------------|------------|
| nominal  | C    | )s        | (                | d <i>l</i> standard length |     |     |     |       |       |       |                |            | >          |            |    |            |            |
| diameter |      | tolerance |                  | tolerance                  |     |     |     | L     |       |       | ٩              | M          | Ц          | Ы          | A  | V - 4      | BB         |
|          | mm   | μm        | mm               | μm                         | mm  |     |     | mm    |       |       | SS             | SS         | SS         | SS         | SP | ъ<br>Ч     | SS         |
| 4        | 4    | 0         | —                | -                          | -   | 100 | 150 | 200   | 300   | -     | 0              | —          | -          | —          | —  | -          | -          |
| 6        | 6    | -12       | -                | -                          | -   | 150 | 200 | 300   | 400   | -     | 0              | $\bigcirc$ | 0          | $\bigcirc$ | 0  | $\circ$    | -          |
| 8        | 8    | 0         | -                | -                          | -   | 150 | 200 | 300   | 400   | 500   | 0              | 0          | 0          | $\bigcirc$ | 0  | $\bigcirc$ | -          |
| 10       | 10   | -15       | -                | -                          | -   | 200 | 300 | 400   | 500   | 600   | 0              | $\bigcirc$ | 0          | $\bigcirc$ | 0  | $\bigcirc$ | -          |
| 13A      | 13   | 0         | -                | -                          | -   | 200 | 300 | 400   | 500   | 600   | 0              | -          | 0          | -          | -  | —          | -          |
| 16A      | 16   | -18       | -                | -                          | -   | 200 | 300 | 400   | 500   | 600   | 0              | —          | $\bigcirc$ | -          | -  | —          | —          |
| 20A      | 20   |           | -                | —                          | -   | 300 | 400 | 500   | 800   | 1,000 | 0              | -          | 0          | Ι          | -  | —          | —          |
| 20       | 18.2 |           | 15               | 0/-18                      | -   | 350 | 450 | 550   | 650   | -     | 0              | —          | 0          | -          | -  | —          | $\bigcirc$ |
| 25A      | 25   | -21       | —                | —                          | 150 | 300 | 400 | 500   | 800   | 1,000 | 0              | -          | 0          | -          | -  | —          | -          |
| 25       | 23   |           | 20               |                            | 150 | 350 | 450 | 550   | 650   | 850   | 0              | -          | 0          | -          | -  | —          | $\bigcirc$ |
| 30       | 28   |           | 25               | 0<br>                      | 150 | 450 | 550 | 650   | 750   | 1,150 | 0              | —          | 0          | -          | -  | —          | $\bigcirc$ |
| 40       | 37.4 | 0         | 30               | 21                         | 150 | 550 | 750 | 950   | 1,150 | -     | 0              | —          | $\bigcirc$ | -          | -  | —          | $\bigcirc$ |
| 50       | 47   | -25       | 40               | 0                          | 150 | 650 | 850 | 1,150 | 1,350 | _     | 0              | -          | 0          | -          | -  | —          | -          |
| 60       | 56.5 | 0/-30     | 45               | -25                        | 150 | 650 | 850 | 1,150 | 1,350 | -     | 0              | -          | 0          | -          | -  | -          | -          |

Tolerance of length L for nominal diameter sizes 4-16A: JIS B0405 coarse grade.

⊖yes − no

Refer to dimensional tables for nut shape and dimensions.

SLIDE GUIDE

**TOPBALL® PRODUCTS** 

SLIDE BUSH

SLIDE UNIT

STROKE BUSH

## COMMERCIAL BALL SPLINE







|          |      |     | major dimensions |       |       |       |       |          |    | appl | icable | e nut |      |            |
|----------|------|-----|------------------|-------|-------|-------|-------|----------|----|------|--------|-------|------|------------|
| nominal  | Ds   |     | standard length  |       |       |       |       |          |    |      |        |       | >    |            |
| diameter |      |     | L                |       |       |       |       | <u>م</u> | М  | Ц    | Ы      | ∢     | Α- Λ | B          |
|          | mm   |     | mm               |       |       |       |       | SS       | SS | SS   | SS     | SP    | SP   | SSI        |
| 20       | 18.2 | 500 | 1,000            | 2,000 | 3,000 | 4,000 | 5,000 | 0        | -  | 0    | -      | -     | -    | 0          |
| 25       | 23   | 500 | 1,000            | 2,000 | 3,000 | 4,000 | 5,000 | 0        | -  | 0    | -      | -     | -    | $\bigcirc$ |
| 30       | 28   | 500 | 1,000            | 2,000 | 3,000 | 4,000 | 5,000 | 0        | -  | 0    | -      | -     | -    | 0          |
| 40       | 37.4 | 500 | 1,000            | 2,000 | 3,000 | 4,000 | 5,000 | 0        | _  | 0    | _      | _     | -    | 0          |
| 50       | 47   | 500 | 1,000            | 2,000 | 3,000 | 4,000 | 5,000 | 0        | _  | 0    | _      | -     | -    | —          |

- tolerance of total length and length of splined portion total length less than 4000: JIS B0405 coarse grade total length greater than 4,000: +/- 5.0mm
- Please specify for tolerances other than those above.
- · Refer to dimensional tables for nut shape and dimensions
- When a commercial shaft is used, the rated load for the nut is about 70% that indicated in the dimensional tables.



SLIDE SHAFT



## **ROTARY BALL SPLINE**

The NB rotary ball spline can be used for both rotational motion and linear motion. It can be used in SCARA robots, the vertical shaft of assembly equipment, and tool changers and loaders.

#### **STRUCTURE AND ADVANTAGES**

The NB rotary ball spline consists of a spline shaft and a nut. The nut has a spline portion and a rotating portion using cross rollers.

#### **Reduced Number of Parts:**

Because of the single-body construction consisting of the rotating portion and the spline portion, the number of parts is reduced so that the accumulated error is reduced as well.

#### **Compact and Light:**

The cross rollers are directly attached to the ball spline's external cylinder, resulting in a compact and light design.

#### **Substantial Reduction in Installation Cost:**

The use of cross roller elements keeps the housing thickness to a minimum, making the ball spline light and easy to install.

#### **High Rigidity:**

The cross roller elements and 4-row ball circuit structure provides high rigidity in spite of the compact design.

#### **High Accuracy:**

The cross roller elements ensure accurate positioning in the rotational direction.



Figure B-20 Structure of NB Rotary Ball Spline

## **ROTARY BALL SPLINE**

SLIDE SCREW

## ACCURACY

The accuracy of the NB rotary ball spline is measured as shown in Figure B-21.

#### Figure B-21 Accuracy Measurement Points



#### Table B-15 Tolerance of Spline Shaft Groove Torsion (Max.)

| accuracy grade | high                     |
|----------------|--------------------------|
| tolerance      | $13\mu{ m m}/100{ m mm}$ |

The groove torsion is indicated for 100mm, arbitrarily set as the effective length of the spline section. When the motion length is under 100mm or exceeds 100mm, the value shown in Table B-15 increases or decreases proportionally to the motion length.

#### Table B-16 Tolerance of Parts Relative to Spline Support Area(Max.) unit/ $\mu\,\text{m}$

| ity |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

#### Table B-17 ④Radial Run Out of Outer Surface of Rotary Spline Nut Relative to Spline Support Area (Max.)

| spline shaft |         | part number |     |       |                  |       |     |  |  |  |  |
|--------------|---------|-------------|-----|-------|------------------|-------|-----|--|--|--|--|
| total l      | ength   | SPR         | SPR | SPR   | SPR              | SPR   | SPR |  |  |  |  |
| greater than | or less | 6,8         | 10  | 13,16 | 20,20A,25,25A,30 | 40,50 | 60  |  |  |  |  |
|              | 200     | 46          | 36  | 34    | 32               | 32    | 30  |  |  |  |  |
| 200          | 315     | 89          | 54  | 45    | 39               | 36    | 34  |  |  |  |  |
| 315          | 400     | 126         | 68  | 53    | 44               | 39    | 36  |  |  |  |  |
| 400          | 500     | 163*        | 82  | 62    | 50               | 43    | 38  |  |  |  |  |
| 500          | 630     | -           | 102 | 75    | 57               | 47    | 41  |  |  |  |  |
| 630          | 800     | -           | -   | 92    | 68               | 54    | 45  |  |  |  |  |
| 800          | 1,000   | -           | -   | 115   | 83               | 63    | 51  |  |  |  |  |
| 1,000        | 1,250   | -           | -   | 153   | 102              | 76    | 59  |  |  |  |  |
| 1,250        | 1,600   | -           | -   | 195*  | 130              | 93    | 70  |  |  |  |  |
| 1 600        | 2 000   | _           | _   | _     | 171              | 118   | 86  |  |  |  |  |

Contact NB for spline shafts exceeding 2000mm.\* SPR6 spline shaft Max. length : 400mm

SPR13,16 Max.length : 1500mm

unit/ $\mu$ m

## **PRE-LOAD AND CLEARANCE IN ROTATIONAL DIRECTION**

The amount of clearance and pre-load for the spline portion and the cross-roller portion are expressed in terms of the clearance in the rotational direction and the clearance in the radial direction, respectively. Three levels of pre-load are available: standard, light (T1), and medium (T2).

|            | part number | standard     | light (T1)    | medium (T2) |  |  |
|------------|-------------|--------------|---------------|-------------|--|--|
|            | SPR 6       | -2a + 1      | -602          |             |  |  |
|            | SPR 8       | -2~+1        | -6~-2         | _           |  |  |
|            | SPR10       |              |               |             |  |  |
|            | SPR13       | -3~+1        | -8~-3         | 40 - 0      |  |  |
|            | SPR16       |              |               | -13~-8      |  |  |
|            | SPR20A      |              |               |             |  |  |
| linear     | SPR20       |              |               |             |  |  |
| motion     | SPR25A      | $-4 \sim +2$ | -12~-4        | -20~-12     |  |  |
|            | SPR25       |              |               |             |  |  |
|            | SPR30       |              |               |             |  |  |
|            | SPR40       |              |               |             |  |  |
|            | SPR50       | $-6 \sim +3$ | $-18 \sim -6$ | -30~-18     |  |  |
|            | SPR60       |              |               |             |  |  |
| rotational | SPR 6       |              |               |             |  |  |
| motion     | ~<br>SPR60  | ±5           |               |             |  |  |
|            | 01100       |              |               |             |  |  |

Table B-18 Pre-Load and Clearance in Rotational Direction  $\mbox{ unit}/\mu\,m$ 

| Table B-19 Op | perating Condition | and Pre-Load |
|---------------|--------------------|--------------|
|---------------|--------------------|--------------|

| pre-load | symbol | operating condition                                                                                |
|----------|--------|----------------------------------------------------------------------------------------------------|
| standard | blank  | Minute vibration is applied. A precise motion is required. Moment is applied in a given direction. |
| light    | T1     | Light vibration is applied. Light torsional load is applied. Cyclic torque is applied.             |
| medium   | T2     | Shock/vibration is applied. Over-hang load is applied. Torsional load is applied.                  |

## SPECIAL REQUIREMENTS

NB will fabricate special shaft ends, spline nuts, spline shafts, surface finish etc. to meet customer requirements. Contact NB for details.





#### Table B-20 recommended hollow shaft

| part       | outer dia.     | inner dia. | modulus of section | giometrical<br>moment of inertia |  |  |
|------------|----------------|------------|--------------------|----------------------------------|--|--|
| number     | mm             | mm         | mm <sup>3</sup>    | mm⁴                              |  |  |
| SPR 6      | 6              | 2          | 19.4               | 58                               |  |  |
| SPR 8      | 8              | 3          | 46.5               | 186                              |  |  |
| SPR10      | 10             | 4          | 89.6               | 448                              |  |  |
| SPR13      | 13             | 6          | 193                | 1,260                            |  |  |
| SPR16      | 16             | 8          | 348                | 2,780                            |  |  |
|            |                | pd (       | ØD3                |                                  |  |  |
| Contact NB | for other size | es.        | +                  |                                  |  |  |

**TOPBALL® PRODUCTS** 

SLIDE

BUSH

SLIDE

U

unit/N • m

## MOUNTING OF ROTARY BALL SPLINE

The flange attachment bolts have been pre-adjusted for smooth rotary movement and should never be loosened. Shock loading to the flange assembly should be avoided as this can degrade the accuracy of movement and deteriorate the overall performance.

#### **Mounting:**

When the flange is to be used with a faucet joint (as shown in Figure B-23) the housing bore should be machined to a tolerance of H7 and to a minimum depth of 60% of the flange thickness. If only a light load is applied to the SPR in operation, the flange can be used without a pilot end.

When the mounting bolts are fixed, they should be tightened diagonally in steps with progressively more torque at each step. A torque wrench should be used to achieve uniform torque. The recommended torque values for medium-hardness steel bolts are listed in Table B-21.

#### **Insertion of Spline Shaft:**

When inserting the rotary ball spline shaft into the spline nut, ensure that the ball elements do not drop out. This is accomplished by aligning the raceway grooves of the shaft with the rows of ball elements in the nut. Then simply insert the spline shaft through the spline nut.

#### LUBRICATION

Since NB rotary ball splines are equipped with seals at both the spline portion and the rotational portion, the lubricant is retained for an extended period of time. Lithium soap grease is applied prior to shipment, so they can be used immediately without having to apply lubricant. Lubricant should be added periodically and depending on the operating conditions.

NB also provides low dust generation grease for the linear system. Please refer to page Eng-20 for details. A grease fitting can be installed as an optional feature however, an oil lubricant should be used for high-





#### Table B-21 Recommended Torque

| installation<br>bolt  | M2  | M2.5 | M4  | M6  | M8   |      |  |  |  |  |  |
|-----------------------|-----|------|-----|-----|------|------|--|--|--|--|--|
| recommended<br>torque | 0.4 | 0.9  | 1.4 | 3.2 | 11.2 | 27.6 |  |  |  |  |  |
|                       |     |      |     |     |      |      |  |  |  |  |  |

(alloy steel bolt)

speed applications. Contact NB for further details.

Figure B-24 Example of Installed Grease Fitting



SLIDE SCREW



## **OPERATING ENVIRONMENT**

Certain operating environments may prevent the full functionality of the rotary ball spline from being achieved expected accuracies. The operating environment should be taken into consideration when designing the system.

#### **Operating Temperature:**

Resin retainers are used in the rotary ball spline, so the operating temperature should never exceed 80°C.

## **APPLICATION EXAMPLES**

#### **Dust Prevention:**

The invasion of foreign particles and dust may affect the motion characteristics of the rotary ball spline and shorten the travel life. Seals will perform well under normal operating conditions, but may not completely prevent the entry of dust in a hostile environment. When used in such environments, a dust prevention mechanism such as bellows or covers should be used to protect the rotary ball spline.



## **ROTARY BALL SPLINE**





ACTUATOR

STROKE BUSH SLIDE ROTARY BUSH

SLIDE SHAFT

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE



## SPR TYPE







|        |                               |           | ball sp | line maj | jor dime                                 | ensions |      |     |     | m   | ajor din              | nension        | s of sup | port be | aring       |              |
|--------|-------------------------------|-----------|---------|----------|------------------------------------------|---------|------|-----|-----|-----|-----------------------|----------------|----------|---------|-------------|--------------|
| nort   | D <sub>1</sub> D <sub>2</sub> |           | l       | L        |                                          | S       | h    | I   | Н   | [   | <b>)</b> <sub>3</sub> | P <sub>2</sub> | d        | G       | θ°          |              |
| part   |                               | tolerance |         |          | tolerance                                |         |      |     |     |     |                       | tolerance      |          |         |             |              |
| number |                               |           |         |          |                                          |         |      |     |     |     |                       |                |          |         |             |              |
|        | mm                            | μm        | mm      | mm       | mm                                       | mm      |      | mm  | mm  | mm  | mm                    | μm             | mm       |         |             | mm           |
| SPR 6  | 20                            |           | 13      | 25       |                                          | 16      | M2   | 2.5 | 5   | 6.5 | 30                    | 0/-21          | 24       | 2.4     | φ2          |              |
| SPR 8  | 22                            | 0         | 15      | 25       |                                          | 18      | M2.5 | 3   | 6   | 6.5 | 33                    |                | 27       | 2.9     |             | 20°          |
| SPR10  | 27                            | -21       | -21 19  | 33       |                                          | 22      | M3   | 4   | 8   | 7   | 40                    | -25            | 33       | 3.4     |             |              |
| SPR13  | 29                            |           | 24      | 36       | $\begin{bmatrix} 0 \\ -02 \end{bmatrix}$ | 24      | M3   | 5   | 8   | 9   | 50                    | 25             | 42       | 3.4     | <b>d</b> 3  | 1 <b>5</b> ° |
| SPR16  | 36                            |           | 31      | 50       | 0.2                                      | 30      | M4   | 6   | 10  | 11  | 60                    |                | 50       | 4.5     | ΨS          | 15           |
| SPR20A | 44                            |           | 35      | 63       |                                          | 38      | M4   | 7   | 12  | 13  | 72                    |                | 62       | 4.5     |             |              |
| SPR20  | 40                            | -25       | 34      | 60       |                                          | 34      | M4   | 7   | 12  | 13  | 66                    | -30            | 56       | 4.5     |             |              |
| SPR25A | 55                            | 20        | 42      | 71       |                                          | 47      | M5   | 8   | 13  | 16  | 82                    |                | 72       | 4.5     |             |              |
| SPR25  | 50                            |           | 40      | 70       |                                          | 42      | M5   | 8   | 13  | 16  | 78                    |                | 68       | 4.5     |             | 15°          |
| SPR30  | 61                            | 0         | 47      | 80       | 0                                        | 52      | M6   | 10  | 17  | 17  | 100                   | 0              | 86       | 6.6     | - M6 × 0.75 | 15           |
| SPR40  | 76                            | -30       | 62      | 100      | -0.3                                     | 64      | M6   | 10  | 23  | 20  | 120                   | -35            | 104      | 9       |             |              |
| SPR50  | 88                            | 0 75 112  | 77      | 77       | M8                                       | 13      | 24   | 22  | 130 | 0   | 114                   | 9              |          |         |             |              |
| SPR60  | 102                           | -35       | 90      | 127      |                                          | 90      | M8   | 13  | 25  | 25  | 150                   | -40            | 132      | 9       |             |              |

## **ROTARY BALL SPLINE**



| spline | shaft     |            | ball s     | pline     |           | support   | bearing         | allowable | second cross-<br>sectional sectional |                        | ma   | ass    | *maximum |             |
|--------|-----------|------------|------------|-----------|-----------|-----------|-----------------|-----------|--------------------------------------|------------------------|------|--------|----------|-------------|
| D      | S         | basic toro | que rating | basic loa | ad rating | basic loa | ad rating       | moment    | moment of inertia                    | coefficient            | nut  | spline | speed    |             |
|        | tolerance | dynamic    | static     | dynamic   | static    | dynamic   | static          |           |                                      |                        |      | shaft  |          | part number |
|        |           | Ст         | Сот        | С         | Со        | CR        | $C_{\text{OR}}$ | Мо        |                                      |                        |      |        |          |             |
| mm     | μm        | N۰m        | N۰m        | kN        | kN        | kN        | kN              | N•m       | mm⁴                                  | mm³                    | kg   | kg/m   | rpm      |             |
| 6      | 0/-12     | 1.5        | 2.4        | 1.22      | 2.28      | 0.6       | 0.5             | 5.1       | 5.9 ×10                              | 1.97×10                | 0.04 | 0.21   | 3,500    | SPR 6       |
| 8      | 0         | 2.1        | 3.7        | 1.45      | 2.87      | 1.2       | 1.14            | 7.4       | 1.9 ×10 <sup>2</sup>                 | 4.76×10                | 0.05 | 0.38   | 3,500    | SPR 8       |
| 10     | -15       | 4.4        | 8.2        | 2.73      | 5.07      | 2.4       | 2.45            | 18.0      | 4.61 × 10 <sup>2</sup>               | 9.22×10                | 0.09 | 0.60   | 3,000    | SPR10       |
| 13     | 0         | 21         | 39.2       | 2.67      | 4.89      | 3.0       | 3.70            | 13.7      | 1.38×10 <sup>3</sup>                 | 2.13×10 <sup>2</sup>   | 0.17 | 1.0    | 1,800    | SPR13       |
| 16     | -18       | 60         | 110        | 6.12      | 11.2      | 5.6       | 6.70            | 46        | 2.98×10 <sup>3</sup>                 | 3.73×10 <sup>2</sup>   | 0.33 | 1.5    | 1,500    | SPR16       |
| 20     |           | 105        | 194        | 8.9       | 16.3      | 6.61      | 7.89            | 63        | 7.35×10 <sup>3</sup>                 | 7.34×10 <sup>2</sup>   | 0.57 | 2.4    | 1,100    | SPR20A      |
| 18.2   |           | 83         | 133        | 7.84      | 11.3      | 5.90      | 7.35            | 63        | 5.05×10 <sup>3</sup>                 | 5.54 × 10 <sup>2</sup> | 0.45 | 2.0    | 1,200    | SPR20       |
| 25     | 0         | 189        | 346        | 12.8      | 23.4      | 10.0      | 13.4            | 171       | 1.79×10⁴                             | 1.43×10 <sup>3</sup>   | 0.81 | 3.7    | 900      | SPR25A      |
| 23     | -21       | 162        | 239        | 12.3      | 16.1      | 9.11      | 11.5            | 104       | 1.27×10⁴                             | 1.11×10 <sup>3</sup>   | 0.75 | 3.1    | 1,000    | SPR25       |
| 28     |           | 289        | 412        | 18.6      | 23.2      | 13.2      | 18.0            | 181       | 2.75×10⁴                             | 1.96×10 <sup>3</sup>   | 1.25 | 4.8    | 800      | SPR30       |
| 37.4   | 0         | 637        | 882        | 30.8      | 37.5      | 22.8      | 32.3            | 358       | 8.73×10⁴                             | 4.67 × 10 <sup>3</sup> | 2.30 | 8.6    | 800      | SPR40       |
| 47     | -25       | 1,390      | 3,180      | 46.1      | 74.2      | 27.2      | 42.1            | 696       | 2.16×10⁵                             | 9.21 × 10 <sup>3</sup> | 3.10 | 13.1   | 570      | SPR50       |
| 56.5   | 0/-30     | 2,100      | 4,800      | 58.0      | 127.4     | 30.0      | 48.2            | 1,300     | 4.51×10⁵                             | 1.60×10⁴               | 4.70 | 19     | 500      | SPR60       |

\*Maximum rotational speed for grease lubrication.

Contact NB for further information when higher speeds or oil lubrication is required.

1kN≒102kgf 1N • m≒0.102kgf • m

SLIDE WAY/GONIO WAY SLIDE TABLE MINIATURE SLIDE

SLIDE SHAFT

SLIDE GUIDE

BALL SPLINE

**TOPBALL® PRODUCTS** 

SLIDE BUSH

SLIDE UNIT

SLIDE ROTARY BUSH STROKE BUSH

ACTUATOR



## **STROKE BALL SPLINE**

The NB stroke ball spine SPLFS type is a high accuracy linear motion bearing with a limited stroke, to which both radial load and torque can be applied at the same time. It operates with extremely small dynamic friction.

#### STRUCTURE AND ADVANTAGES

The NB stroke ball spline consists of a nut and a shaft both with raceway grooves . Since the retainer in the nut is equipped with a ball pocket, the steel balls, (rolling elements) do not contact each other, which allows for a smooth linear motion.

In a linear motion, however, the retainer moves a half of the travel distance. Therefore, the linear travel stroke is limited up to twice as long as the distance that the retainer can move in the nut. For normal operation, it is recommended to consider 80% of the maximum stroke shown in the dimension list as an actual travel distance.

## Extremely Small Dynamic Friction and Low Noise:

The rolling elements are separated by the ball pockets so that they do not contact each other. The stroke length is limited, but extremely small dynamic friction and low noise are realized because the rolling elements do not circulate.

#### **Compact-Size:**

With the nut about 20% smaller than existing ball splines, it contributes to space saving.

#### **All Stainless Steel:**

Since all the components are made of stainless steel, this stroke ball spline has an excellent corrosion resistance and heat resistance (operating temperature: -20 to +140 $^{\circ}$ C). It is ideal for clean-room or vacuum applications.

#### **Lubrication:**

A lubricant groove and two lubrication holes are provided on the outer surface of the nut, which allow for an easy designing of lubricant replenishment.



## **STROKE BALL SPLINE**

Table B-22 Spline Shaft/Groove Distortion Tolerance (Maximum)

tolerance ( $\mu$ m)

13

SLIDE SCREW

### ACCURACY

The accuracy of the NB stroke ball spline is measured as shown in the figure below.

#### Figure B-26 Accuracy



The part attachment area refers to a portion to which another mechanical element, such as a gear, is attached.

#### Spline Shaft/Groove Distortion Tolerance (Maximum)

Groove distortion is measured at a given 100 mm out of the effective length of the spline portion. When the travel distance is less or more than 100 mm, increase or decrease the value shown in Table B-22 in proportion to the travel distance.

#### Table B-23 Tolerance of Parts Relative to Spline Support Area (Max.)

| part number | ${f T}$ radial run out of part attachment area | ② perpendicularity of the end of the spline shaft section | ③ perpendicularity of the flange |  |  |  |  |
|-------------|------------------------------------------------|-----------------------------------------------------------|----------------------------------|--|--|--|--|
| SPLFS 6     | 14                                             | 9                                                         | 11                               |  |  |  |  |
| SPLFS 8     | 14                                             | 9                                                         | 11                               |  |  |  |  |
| SPLFS10     | 17                                             | 9                                                         | 13                               |  |  |  |  |
| SPLFS13     | 19                                             | 11                                                        | 13                               |  |  |  |  |
| SPLFS16     | 19                                             | 11                                                        | 13                               |  |  |  |  |

Table B-24 ④ Radial Run-Out of Outer Surface of Spline Nut Relative to Spline Support Area (Max.)

| -            | -       | · · ·     | 1 11 (      | ,           |
|--------------|---------|-----------|-------------|-------------|
| spline       | shaft   |           | part number |             |
| total le     | ength   |           | SPI ES10    | SDI ES13 16 |
| greater than | or less | 3FEI 30,8 | SFEI STO    | 3FEI 313,10 |
|              | 200     | 46        | 36          | 34          |
| 200          | 315     | 89        | 54          | 45          |
| 315          | 400     | 126*      | 68          | 53          |
| 400          | 500     | 163*      | 82          | 62          |
| 500          | 630     | _         | 102         | 75          |
| 630          | 800     | _         | -           | 92          |
| 800          | 1,000   | _         | _           | 115         |
| 1,000        | 1,250   | _         | _           | 153         |
| 1,250        | 1,500   | _         | -           | 195         |

\* maximum fabrication length of SPLFS6: 400 mm

unit/ $\mu$ m

unit/µm

## PRE-LOAD AND CLEARANCE IN ROTATIONAL DIRECTION

Both the clearance and pre-load are expressed in terms of clearance in the rotational direction. For the SPLFS type, only the standard value shown below is available. Contact us if you need a clearance other than shown in Table B-25.

| part number | standard |
|-------------|----------|
| SPLFS 6     | 0~-4     |
| SPLFS 8     | 0~-4     |
| SPLFS10     | 0~-4     |
| SPLFS13     | 0~-4     |
| SPLFS16     | 0~-4     |

Table B-25 Pre-Load and Clearance in Rotational Direction  $unit/\mu$ m

## **COMPARISON OF DYNAMIC FRICTION RESISTANCE**

Figure B-27 Comparison Data of dynamic Friction Resistance



## **TOPBALL® PRODUCTS**

SLIDE BUSH

## NOTES ON USE

#### **Dust Control:**

Since the stroke ball splines are designed and manufactured for operating with an extremely small dynamic friction resistance, any seal that increases the dynamic friction resistance is not equipped as a standard feature. If you use this type of spline under unfavorable conditions, contact us and a special seal will be available.be For use under extremely unfavorable conditions, the stroke ball spline should be protected using bellows and protective covers.

#### **Retainer Misalignment:**

If the stroke ball spline is used at a high speed or with a vertical shaft, or under an asymmetric load or oscillation, a retainer misalignment may occur. For general operation, it is recommended to consider 80% of the maximum stroke length shown in the dimension list as a travel distance.

In order to prevent the retainer misalignment, it is also recommended to conduct a full-stroke moving operation times during use so that the retainer will be relocated to the center.



## **SPLFS TYPE**

- Two Side Cut Flange Type -







|         |         | major dimensions |           |      |    |           |     |      |    |    |        |    |    |       |
|---------|---------|------------------|-----------|------|----|-----------|-----|------|----|----|--------|----|----|-------|
| part    | maximum | D                |           | D1   | L  |           | Е   | Df   | Н  | В  | P.C.D. | Α  | F  | N₁-S  |
| number  | stroke  |                  | tolerance |      |    | tolerance |     |      |    |    |        |    |    |       |
|         | mm      | mm               | μm        | mm   | mm | mm        | mm  | mm   | mm | mm | mm     | mm | mm | mm    |
| SPLFS 6 | 22      | 11               |           | 10   | 40 |           | 3.3 | 23   | 4  | 14 | 17     | -  | -  | 2-3.4 |
| SPLFS 8 | 20      | 13               |           | 12.5 | 40 |           | 3.3 | 25.5 | 4  | 16 | 19.5   | -  | —  | 2-3.4 |
| SPLFS10 | 28      | 16               |           | 15.5 | 50 | -02       | 3.3 | 28.5 | 5  | 20 | -      | 18 | 13 | 4-3.4 |
| SPLFS13 | 24      | 20               | 0         | 19.5 | 50 | 0.2       | 4.8 | 36   | 5  | 25 | -      | 22 | 17 | 4-3.4 |
| SPLFS16 | 26      | 24               | -9        | 23.5 | 60 |           | 4.8 | 40   | 7  | 29 | -      | 25 | 19 | 4-4.5 |



|      |     |    | basic torque rating |         | basic load rating |         | allowable static |      | second cross- | mounting<br>surface    | mass                 |       |       |      |
|------|-----|----|---------------------|---------|-------------------|---------|------------------|------|---------------|------------------------|----------------------|-------|-------|------|
| W    | d   | C  | )s                  | dynamic | static            | dynamic | static           | mon  | moment        |                        | Cundoo               | nut   | shaft | 0170 |
|      |     |    | tolerance           | Ст      | Сот               | С       | Co               | M01  | M02           |                        |                      |       |       | SIZE |
| mm   | mm  | mm | μm                  | N۰m     | N۰m               | kN      | kN               | N۰m  | N۰m           | mm⁴                    | mm³                  | g     | kg/m  |      |
| 12.7 | 1.2 | 6  | 0/-12               | 1.5     | 2.4               | 1.8     | 3.0              | 11.2 | 45            | 5.9 ×10                | 1.97×10              | 21.5  | 0.21  | 6    |
| 12.7 | 1.2 | 8  | 0                   | 3.3     | 5.5               | 2.02    | 3.37             | 13.1 | 52            | 1.9 × 10 <sup>2</sup>  | 4.76×10              | 27.0  | 0.38  | 8    |
| 16.7 | 1.5 | 10 | -15                 | 6.5     | 10.9              | 3.21    | 5.35             | 25.6 | 102           | 4.61 × 10 <sup>2</sup> | 9.22×10              | 47.7  | 0.6   | 10   |
| 15.2 | 1.5 | 13 | 0                   | 27.6    | 50.7              | 4.15    | 7.6              | 38.8 | 155           | 1.38×10 <sup>3</sup>   | 2.13×10 <sup>2</sup> | 75.3  | 1.0   | 13   |
| 18.2 | 2.0 | 16 | -18                 | 62.8    | 115               | 7.66    | 14               | 88.3 | 353           | 2.98×10 <sup>3</sup>   | 3.73×10 <sup>2</sup> | 123.5 | 1.5   | 16   |

1N≒102kgf 1N • m≒0.102kgf • m

SLIDE GUIDE

BALL SPLINE

IN

**TOPBALL® PRODUCTS** 

SLIDE BUSH

SLIDE UNIT